ArchABM: An agent-based simulator of human interaction with the built environment. CO2 and viral load analysis for indoor air quality

Authors: Iñigo Martínez López Jan Lukas Bruse Ane Miren Flórez Tapia Elisabeth Viles Igor García Olaizola

Date: 01.01.2022

Building and Environment


Abstract

Recent evidence suggests that SARS-CoV-2, which is the virus causing a global pandemic in 2020, is predominantly transmitted via airborne aerosols in indoor environments. This calls for novel strategies when assessing and controlling a building’s indoor air quality (IAQ). IAQ can generally be controlled by ventilation and/or policies to regulate human–building-interaction. However, in a building, occupants use rooms in different ways, and it may not be obvious which measure or combination of measures leads to a cost- and energy-effective solution ensuring good IAQ across the entire building. Therefore, in this article, we introduce a novel agent-based simulator, ArchABM, designed to assist in creating new or adapt existing buildings by estimating adequate room sizes, ventilation parameters and testing the effect of policies while taking into account IAQ as a result of complex human–building interaction patterns. A recently published aerosol model was adapted to calculate time-dependent carbon dioxide (CO2) and virus quanta concentrations in each room and inhaled CO2 and virus quanta for each occupant over a day as a measure of physiological response. ArchABM is flexible regarding the aerosol model and the building layout due to its modular architecture, which allows implementing further models, any number and size of rooms, agents, and actions reflecting human–building interaction patterns. We present a use case based on a real floor plan and working schedules adopted in our research center. This study demonstrates how advanced simulation tools can contribute to improving IAQ across a building, thereby ensuring a healthy indoor environment.

BIB_text

@Article {
title = {ArchABM: An agent-based simulator of human interaction with the built environment. CO2 and viral load analysis for indoor air quality},
journal = {Building and Environment},
pages = {108495},
volume = {207},
keywds = {
Agent-based modeling, Indoor air quality, Building ventilation, Aerosol model, Building design, Simulation
}
abstract = {

Recent evidence suggests that SARS-CoV-2, which is the virus causing a global pandemic in 2020, is predominantly transmitted via airborne aerosols in indoor environments. This calls for novel strategies when assessing and controlling a building’s indoor air quality (IAQ). IAQ can generally be controlled by ventilation and/or policies to regulate human–building-interaction. However, in a building, occupants use rooms in different ways, and it may not be obvious which measure or combination of measures leads to a cost- and energy-effective solution ensuring good IAQ across the entire building. Therefore, in this article, we introduce a novel agent-based simulator, ArchABM, designed to assist in creating new or adapt existing buildings by estimating adequate room sizes, ventilation parameters and testing the effect of policies while taking into account IAQ as a result of complex human–building interaction patterns. A recently published aerosol model was adapted to calculate time-dependent carbon dioxide (CO2) and virus quanta concentrations in each room and inhaled CO2 and virus quanta for each occupant over a day as a measure of physiological response. ArchABM is flexible regarding the aerosol model and the building layout due to its modular architecture, which allows implementing further models, any number and size of rooms, agents, and actions reflecting human–building interaction patterns. We present a use case based on a real floor plan and working schedules adopted in our research center. This study demonstrates how advanced simulation tools can contribute to improving IAQ across a building, thereby ensuring a healthy indoor environment.


}
doi = {10.1016/j.buildenv.2021.108495},
date = {2022-01-01},
}
Vicomtech

Parque Científico y Tecnológico de Gipuzkoa,
Paseo Mikeletegi 57,
20009 Donostia / San Sebastián (Spain)

+(34) 943 309 230

Zorrotzaurreko Erribera 2, Deusto,
48014 Bilbao (Spain)

close overlay

Behavioral advertising cookies are necessary to load this content

Accept behavioral advertising cookies