Experience-based SEEG planning: from retrospective data to automated electrode trajectories suggestions

Authors: Davide Scorza Camilo Andrés Cortés Acosta Arkaitz Artetxe Vallejo Álvaro Bertelsen Simonetti Michele Rizzi Francesca Cardinale Elena De Momi Gaetano Amoroso Luis Kabongo Laura Castana

Date: 28.08.2018

Healthcare Technology Letters


Abstract

StereoElectroEncephaloGraphy (SEEG) is a minimally invasive technique that consists of the insertion of multiple intracranial electrodes to precisely identify the epileptogenic focus. The planning of electrode trajectories is a cumbersome and time-consuming task. Current approaches to support the planning focus on electrode trajectory optimisation based on geometrical constraints but are not helpful to produce an initial electrode set to begin with the planning procedure. In this work, the authors propose a methodology that analyses retrospective planning data and builds a set of average trajectories, representing the practice of a clinical centre, which can be mapped to a new patient to initialise planning procedure. They collected and analysed the data from 75 anonymised patients, obtaining 30 exploratory patterns and 61 mean trajectories in an average brain space. A preliminary validation on a test set showed that they were able to correctly map 90% of those trajectories and, after optimisation, they have comparable or better values than manual trajectories in terms of distance from vessels and insertion angle. Finally, by detecting and analysing similar plans, they were able to identify eight planning strategies, which represent the main tailored sets of trajectories that neurosurgeons used to deal with the different patient cases.

BIB_text

@Article {
title = {Experience-based SEEG planning: from retrospective data to automated electrode trajectories suggestions},
journal = {Healthcare Technology Letters},
pages = {167-171},
volume = {5},
keywds = {
diseases; medical signal processing; data mining; brain; surgery; radiation therapy; electroencephalography; neurophysiology; biomedical electrodes; medical image processing ; SEEG; automated planning
}
abstract = {

StereoElectroEncephaloGraphy (SEEG) is a minimally invasive technique that consists of the insertion of multiple intracranial electrodes to precisely identify the epileptogenic focus. The planning of electrode trajectories is a cumbersome and time-consuming task. Current approaches to support the planning focus on electrode trajectory optimisation based on geometrical constraints but are not helpful to produce an initial electrode set to begin with the planning procedure. In this work, the authors propose a methodology that analyses retrospective planning data and builds a set of average trajectories, representing the practice of a clinical centre, which can be mapped to a new patient to initialise planning procedure. They collected and analysed the data from 75 anonymised patients, obtaining 30 exploratory patterns and 61 mean trajectories in an average brain space. A preliminary validation on a test set showed that they were able to correctly map 90% of those trajectories and, after optimisation, they have comparable or better values than manual trajectories in terms of distance from vessels and insertion angle. Finally, by detecting and analysing similar plans, they were able to identify eight planning strategies, which represent the main tailored sets of trajectories that neurosurgeons used to deal with the different patient cases.


}
doi = {10.1049/htl.2018.5075},
date = {2018-08-28},
}
Vicomtech

Parque Científico y Tecnológico de Gipuzkoa,
Paseo Mikeletegi 57,
20009 Donostia / San Sebastián (Spain)

+(34) 943 309 230

Zorrotzaurreko Erribera 2, Deusto,
48014 Bilbao (Spain)

close overlay

Behavioral advertising cookies are necessary to load this content

Accept behavioral advertising cookies