Prediction and Analysis of Heart Failure Decompensation Events Based on Telemonitored Data and Artificial Intelligence Methods

Autores: Jon Kerexeta Sarriegi Nekane Larburu Rubio Vanessa Escolar Ainara Lozano Iván Macía Oliver Andoni Beristain Iraola Manuel Graña

Fecha: 01.02.2023

Journal of Cardiovascular Development and Disease


Abstract

Cardiovascular diseases are the leading cause of death globally, taking an estimated 17.9 million lives each year. Heart failure (HF) occurs when the heart is not able to pump enough blood to satisfy metabolic needs. People diagnosed with chronic HF may suffer from cardiac decompensation events (CDEs), which cause patients’ worsening. Being able to intervene before decompensation occurs is the major challenge addressed in this study. The aim of this study is to exploit available patient data to develop an artificial intelligence (AI) model capable of predicting the risk of CDEs timely and accurately. Materials and Methods: The vital variables of patients (n = 488) diagnosed with chronic heart failure were monitored between 2014 and 2022. Several supervised classification models were trained with these monitoring data to predict CDEs, using clinicians’ annotations as the gold standard. Feature extraction methods were applied to identify significant variables. Results: The XGBoost classifier achieved an AUC of 0.72 in the cross-validation process and 0.69 in the testing set. The most predictive physiological variables for CAE decompensations are weight gain, oxygen saturation in the final days, and heart rate. Additionally, the answers to questionnaires on wellbeing, orthopnoea, and ankles are strongly significant predictors.

BIB_text

@Article {
title = {Prediction and Analysis of Heart Failure Decompensation Events Based on Telemonitored Data and Artificial Intelligence Methods},
journal = {Journal of Cardiovascular Development and Disease},
pages = {48},
volume = {10},
keywds = {
decompensation; heart failure; logistic regression; machine learning; monitoring; supervised classification; XGBoost
}
abstract = {

Cardiovascular diseases are the leading cause of death globally, taking an estimated 17.9 million lives each year. Heart failure (HF) occurs when the heart is not able to pump enough blood to satisfy metabolic needs. People diagnosed with chronic HF may suffer from cardiac decompensation events (CDEs), which cause patients’ worsening. Being able to intervene before decompensation occurs is the major challenge addressed in this study. The aim of this study is to exploit available patient data to develop an artificial intelligence (AI) model capable of predicting the risk of CDEs timely and accurately. Materials and Methods: The vital variables of patients (n = 488) diagnosed with chronic heart failure were monitored between 2014 and 2022. Several supervised classification models were trained with these monitoring data to predict CDEs, using clinicians’ annotations as the gold standard. Feature extraction methods were applied to identify significant variables. Results: The XGBoost classifier achieved an AUC of 0.72 in the cross-validation process and 0.69 in the testing set. The most predictive physiological variables for CAE decompensations are weight gain, oxygen saturation in the final days, and heart rate. Additionally, the answers to questionnaires on wellbeing, orthopnoea, and ankles are strongly significant predictors.


}
doi = {10.3390/jcdd10020048},
date = {2023-02-01},
}
Vicomtech

Parque Científico y Tecnológico de Gipuzkoa,
Paseo Mikeletegi 57,
20009 Donostia / San Sebastián (España)

+(34) 943 309 230

Zorrotzaurreko Erribera 2, Deusto,
48014 Bilbao (España)

close overlay

Las cookies de publicidad comportamental son necesarias para cargar el contenido

Aceptar cookies de publicidad comportamental