Supervised and Unsupervised Minimalist Quality Estimators: Vicomtech s Participation in the WMT 2018 Quality Estimation Task

Autores: Thierry Etchegoyhen Eva Martínez García Andoni Azpeitia Zaldua

Fecha: 30.10.2018


Abstract

We describe Vicomtech’s participation in the WMT 2018 shared task on quality estimation, for which we submitted minimalist quality estimators. The core of our approach is based on two simple features: lexical translation overlaps and language model cross-entropy scores. These features are exploited in two system variants: uMQE is an unsupervised system, where the final quality score is obtained by averaging individual feature scores; sMQE is a supervised variant, where the final score is estimated
by a Support Vector Regressor trained on the available annotated datasets. The main goal of our minimalist approach to quality estimation is to provide reliable estimators that require minimal deployment effort, few resources, and, in the case of uMQE, do not depend on costly data annotation or post-editing. Our approach was applied to all language pairs in sentence quality estimation, obtaining competitive results across the board.

BIB_text

@Article {
title = {Supervised and Unsupervised Minimalist Quality Estimators: Vicomtech s Participation in the WMT 2018 Quality Estimation Task},
pages = {795-800},
keywds = {
Machine Translation, Quality Estimation
}
abstract = {

We describe Vicomtech’s participation in the WMT 2018 shared task on quality estimation, for which we submitted minimalist quality estimators. The core of our approach is based on two simple features: lexical translation overlaps and language model cross-entropy scores. These features are exploited in two system variants: uMQE is an unsupervised system, where the final quality score is obtained by averaging individual feature scores; sMQE is a supervised variant, where the final score is estimated
by a Support Vector Regressor trained on the available annotated datasets. The main goal of our minimalist approach to quality estimation is to provide reliable estimators that require minimal deployment effort, few resources, and, in the case of uMQE, do not depend on costly data annotation or post-editing. Our approach was applied to all language pairs in sentence quality estimation, obtaining competitive results across the board.


}
date = {2018-10-30},
}
Vicomtech

Parque Científico y Tecnológico de Gipuzkoa,
Paseo Mikeletegi 57,
20009 Donostia / San Sebastián (España)

+(34) 943 309 230

Zorrotzaurreko Erribera 2, Deusto,
48014 Bilbao (España)

close overlay

Las cookies de publicidad comportamental son necesarias para cargar el contenido

Aceptar cookies de publicidad comportamental