Fully Automatic Cardiac Segmentation And Quantification For Pulmonary Hypertension Analysis Using Mice Cine Mr Images

Egileak: Blanca Zufiria Gerbolés Maialen Stephens Txurio María Jesús Sánchez J. Ruiz-Cabello Karen López-Linares Román Iván Macía Oliver

Data: 13.04.2021


Abstract

Pulmonary Hypertension (PH) induces anatomical changes in the cardiac muscle that can be quantitativly assessed using Magnetic Resonance (MR). Yet, the extraction of biomarkers relies on the segmentation of the affected structures, which in many cases is performed manually by physicians. Previous approaches have shown successful automatic segmentation results for different heart structures from human cardiac MR images. Nevertheless, the segmentation from mice images is rarely addressed, but it is essential for preclinical studies. Thus, the aim of this work is to develop an automatic tool based on a convolutional neural network for the segmentation of 4 cardiac structures at once in healthy and pathological mice to precisely evaluate biomarkers that may correlate to PH. The obtained automatic segmentations are comparable to manual segmentations, and they improve the distinction between control and pathological cases, especially regarding biomarkers from the right ventricle.

BIB_text

@Article {
title = {Fully Automatic Cardiac Segmentation And Quantification For Pulmonary Hypertension Analysis Using Mice Cine Mr Images},
pages = {1411-1415},
keywds = {
Automatic segmentation tool; LM; LV; MRI; Pulmonary Hypertension; RM; RV
}
abstract = {

Pulmonary Hypertension (PH) induces anatomical changes in the cardiac muscle that can be quantitativly assessed using Magnetic Resonance (MR). Yet, the extraction of biomarkers relies on the segmentation of the affected structures, which in many cases is performed manually by physicians. Previous approaches have shown successful automatic segmentation results for different heart structures from human cardiac MR images. Nevertheless, the segmentation from mice images is rarely addressed, but it is essential for preclinical studies. Thus, the aim of this work is to develop an automatic tool based on a convolutional neural network for the segmentation of 4 cardiac structures at once in healthy and pathological mice to precisely evaluate biomarkers that may correlate to PH. The obtained automatic segmentations are comparable to manual segmentations, and they improve the distinction between control and pathological cases, especially regarding biomarkers from the right ventricle.


}
isbn = {978-166541246-9},
date = {2021-04-13},
}
Vicomtech

Gipuzkoako Zientzia eta Teknologia Parkea,
Mikeletegi Pasealekua 57,
20009 Donostia / San Sebastián (Espainia)

+(34) 943 309 230

Zorrotzaurreko Erribera 2, Deusto,
48014 Bilbo (Espainia)

close overlay

Jokaeraren araberako publizitateko cookieak beharrezkoak dira eduki hau kargatzeko

Onartu jokaeraren araberako publizitateko cookieak