LiDAR-based curb detection for ground truth annotation in automated driving validation

Egileak: Apellaniz, Jose Luis

Data: 28.09.2023


Abstract

Curb detection is essential for environmental awareness in Automated Driving (AD), as it typically limits drivable and non-drivable areas. Annotated data are necessary for developing and validating an AD function. However, the number of public datasets with annotated point cloud curbs is scarce. This paper presents a method for detecting 3D curbs in a sequence of point clouds captured from a LiDAR sensor, which consists of two main steps. First, our approach detects the curbs at each scan using a segmentation deep neural network. Then, a sequence-level processing step estimates the 3D curbs in the reconstructed point cloud using the odometry of the vehicle. From these 3D points of the curb, we obtain polylines structured following ASAM OpenLABEL standard. These detections can be used as pre-annotations in labelling pipelines to efficiently generate curb-related ground truth data. We validate our approach through an experiment in which different human annotators were required to annotate curbs in a group of LiDAR-based sequences with and without our automatically generated pre-annotations. The results show that the manual annotation time is reduced by 50.99% thanks to our detections, keeping the data quality level. 

BIB_text

@Article {
author = {Apellaniz, Jose Luis},
title = {LiDAR-based curb detection for ground truth annotation in automated driving validation},
pages = {7},
keywds = {
Intelligent systems; Intelligent vehicle highway systems; Optical radar
}
abstract = {

Curb detection is essential for environmental awareness in Automated Driving (AD), as it typically limits drivable and non-drivable areas. Annotated data are necessary for developing and validating an AD function. However, the number of public datasets with annotated point cloud curbs is scarce. This paper presents a method for detecting 3D curbs in a sequence of point clouds captured from a LiDAR sensor, which consists of two main steps. First, our approach detects the curbs at each scan using a segmentation deep neural network. Then, a sequence-level processing step estimates the 3D curbs in the reconstructed point cloud using the odometry of the vehicle. From these 3D points of the curb, we obtain polylines structured following ASAM OpenLABEL standard. These detections can be used as pre-annotations in labelling pipelines to efficiently generate curb-related ground truth data. We validate our approach through an experiment in which different human annotators were required to annotate curbs in a group of LiDAR-based sequences with and without our automatically generated pre-annotations. The results show that the manual annotation time is reduced by 50.99% thanks to our detections, keeping the data quality level. 


}
isbn = {979-835039946-2},
date = {2023-09-28},
}
Vicomtech

Gipuzkoako Zientzia eta Teknologia Parkea,
Mikeletegi Pasealekua 57,
20009 Donostia / San Sebastián (Espainia)

+(34) 943 309 230

Zorrotzaurreko Erribera 2, Deusto,
48014 Bilbo (Espainia)

close overlay

Jokaeraren araberako publizitateko cookieak beharrezkoak dira eduki hau kargatzeko

Onartu jokaeraren araberako publizitateko cookieak