MEC for Fair, Reliable and Efficient Media Streaming in Mobile Networks
Egileak: Pablo Angueira Jon Montalbán
Data: 01.06.2020
IEEE Transactions on Broadcasting
Abstract
Beyond the advanced radio capabilities, 5G means a digital transformation, catalyzed by cloud technologies, making the networks agile and broader. However, high and quick dynamics in dense client cells consuming live broadcast contents can cause Quality of Experience (QoE) degradations. Here, inaccurate bandwidth assessment of media players drives to buffering times along with quality fluctuations. Moreover, massive recurrent requests can negatively impact on Content Delivery Network (CDN) performance. Complemented by capillarity and zero-latency features of multi-access edge computing (MEC) systems, 5G infrastructures will expand media services to take QoE to a new level. This paper investigates QoE gains of an MEC enabled infrastructure. The proposed MEC system applies three video delivery mechanisms. First, it enforces the QoE in a congested cell. Second, it shields from CDN degradation for a reliable content distribution. Third, it enhances network core and backhaul efficiency saving CDN traffic. Furthermore, our solution is deployed and tested on a LTE infrastructure. Results for live streams show that the MEC system makes the media players tend to a common and high quality bitrate, and it is able to quickly, transparently and coordinately switch to healthy CDN infrastructures and reduce CDN traffic.
BIB_text
title = {MEC for Fair, Reliable and Efficient Media Streaming in Mobile Networks},
journal = {IEEE Transactions on Broadcasting},
pages = {264-278},
volume = {66},
keywds = {
Content delivery network, multi-access edge computing, quality of experience, radio access network, software-defined radio
}
abstract = {
Beyond the advanced radio capabilities, 5G means a digital transformation, catalyzed by cloud technologies, making the networks agile and broader. However, high and quick dynamics in dense client cells consuming live broadcast contents can cause Quality of Experience (QoE) degradations. Here, inaccurate bandwidth assessment of media players drives to buffering times along with quality fluctuations. Moreover, massive recurrent requests can negatively impact on Content Delivery Network (CDN) performance. Complemented by capillarity and zero-latency features of multi-access edge computing (MEC) systems, 5G infrastructures will expand media services to take QoE to a new level. This paper investigates QoE gains of an MEC enabled infrastructure. The proposed MEC system applies three video delivery mechanisms. First, it enforces the QoE in a congested cell. Second, it shields from CDN degradation for a reliable content distribution. Third, it enhances network core and backhaul efficiency saving CDN traffic. Furthermore, our solution is deployed and tested on a LTE infrastructure. Results for live streams show that the MEC system makes the media players tend to a common and high quality bitrate, and it is able to quickly, transparently and coordinately switch to healthy CDN infrastructures and reduce CDN traffic.
}
doi = {10.1109/TBC.2019.2954097},
date = {2020-06-01},
}