Medical Image Segmentation Using Deep Learning

Egileak: Karen López-Linares Román Inma García Nerea Lete Miguel Ángel González Iván Macía Oliver

Data: 01.01.2020


Abstract

This chapter aims at providing an introduction to deep learning-based medical image segmentation. First, the reader is guided through the inherent challenges of medical image segmentation, for which actual approaches to overcome those limitations are discussed. Secondly, supervised and semi-supervised architectures are described, where encoder-decoder type networks are the most widely employed ones. Nonetheless, generative adversarial network-based semi-supervised approaches have recently gained the attention of the scientific community. The shift from traditional 2D to 3D architectures is also discussed, as well as the most common loss functions to improve the performance of medical image segmentation approaches. Finally, some future trends and conclusion are described.

BIB_text

@Article {
title = {Medical Image Segmentation Using Deep Learning},
pages = {17-31},
abstract = {

This chapter aims at providing an introduction to deep learning-based medical image segmentation. First, the reader is guided through the inherent challenges of medical image segmentation, for which actual approaches to overcome those limitations are discussed. Secondly, supervised and semi-supervised architectures are described, where encoder-decoder type networks are the most widely employed ones. Nonetheless, generative adversarial network-based semi-supervised approaches have recently gained the attention of the scientific community. The shift from traditional 2D to 3D architectures is also discussed, as well as the most common loss functions to improve the performance of medical image segmentation approaches. Finally, some future trends and conclusion are described.


}
isbn = {1868-4394},
date = {2020-01-01},
}
Vicomtech

Gipuzkoako Zientzia eta Teknologia Parkea,
Mikeletegi Pasealekua 57,
20009 Donostia / San Sebastián (Espainia)

+(34) 943 309 230

Zorrotzaurreko Erribera 2, Deusto,
48014 Bilbo (Espainia)

close overlay

Jokaeraren araberako publizitateko cookieak beharrezkoak dira eduki hau kargatzeko

Onartu jokaeraren araberako publizitateko cookieak