Semi-automatic Pipeline for Large-Scale Dataset Annotation Task: A DMD Application

Egileak: Urselmann, Teun

Data: 23.10.2023


Abstract

This paper concerns a methodology of a semi-automatic annotation strategy for the gaze estimation material of the Driver Monitoring Dataset (DMD). It consists of a pipeline of semi-automatic annotation that uses ideas from Active Learning to annotate data with an accuracy as high as possible using less human intervention. A dummy model (the initial model) that is improved by iterative training and other state-of-the-art (SoA) models are the actors of an automatic label assessment strategy that will annotate new material. The newly annotated data will be used as an iterative process to train the dummy model and repeat the loop. The results show a reduction of annotation work for the human by 60%, where the automatically annotated images have a reliability of 99%.

BIB_text

@Article {
author = {Urselmann, Teun},
title = {Semi-automatic Pipeline for Large-Scale Dataset Annotation Task: A DMD Application},
pages = {560-574},
keywds = {
Active learning; Deep learning; Driver monitoring systems; Gaze estimation; Image classification
}
abstract = {

This paper concerns a methodology of a semi-automatic annotation strategy for the gaze estimation material of the Driver Monitoring Dataset (DMD). It consists of a pipeline of semi-automatic annotation that uses ideas from Active Learning to annotate data with an accuracy as high as possible using less human intervention. A dummy model (the initial model) that is improved by iterative training and other state-of-the-art (SoA) models are the actors of an automatic label assessment strategy that will annotate new material. The newly annotated data will be used as an iterative process to train the dummy model and repeat the loop. The results show a reduction of annotation work for the human by 60%, where the automatically annotated images have a reliability of 99%.


}
isbn = {978-303125074-3},
date = {2023-10-23},
}
Vicomtech

Gipuzkoako Zientzia eta Teknologia Parkea,
Mikeletegi Pasealekua 57,
20009 Donostia / San Sebastián (Espainia)

+(34) 943 309 230

Zorrotzaurreko Erribera 2, Deusto,
48014 Bilbo (Espainia)

close overlay

Jokaeraren araberako publizitateko cookieak beharrezkoak dira eduki hau kargatzeko

Onartu jokaeraren araberako publizitateko cookieak