The Vicomtech Audio Deepfake Detection System Based on Wav2vec2 for the 2022 ADD Challenge

Egileak: Juan Manuel Martín Doñas Aitor Álvarez Muniain

Data: 23.05.2022


Abstract

This paper describes our submitted systems to the 2022 ADD challenge withing the tracks 1 and 2. Our approach is based on the combination of a pre-trained wav2vec2 feature extractor and a downstream classifier to detect spoofed audio. This method exploits the contextualized speech representations at the different transformer layers to fully capture discriminative information. Furthermore, the classification model is adapted to the application scenario using different data augmentation techniques. We evaluate our system for audio synthesis detection in both the ASVspoof 2021 and the 2022 ADD challenges, showing its robustness and good performance in realistic challenging environments such as telephonic and audio codec systems, noisy audio, and partial deepfakes.

BIB_text

@Article {
title = {The Vicomtech Audio Deepfake Detection System Based on Wav2vec2 for the 2022 ADD Challenge},
pages = {7937-7941},
keywds = {
antispoofing, wav2vec2, audio deepfakes, self-supervised, data augmentation
}
abstract = {

This paper describes our submitted systems to the 2022 ADD challenge withing the tracks 1 and 2. Our approach is based on the combination of a pre-trained wav2vec2 feature extractor and a downstream classifier to detect spoofed audio. This method exploits the contextualized speech representations at the different transformer layers to fully capture discriminative information. Furthermore, the classification model is adapted to the application scenario using different data augmentation techniques. We evaluate our system for audio synthesis detection in both the ASVspoof 2021 and the 2022 ADD challenges, showing its robustness and good performance in realistic challenging environments such as telephonic and audio codec systems, noisy audio, and partial deepfakes.


}
isbn = {978-1-6654-0540-9},
date = {2022-05-23},
}
Vicomtech

Gipuzkoako Zientzia eta Teknologia Parkea,
Mikeletegi Pasealekua 57,
20009 Donostia / San Sebastián (Espainia)

+(34) 943 309 230

Zorrotzaurreko Erribera 2, Deusto,
48014 Bilbo (Espainia)

close overlay

Jokaeraren araberako publizitateko cookieak beharrezkoak dira eduki hau kargatzeko

Onartu jokaeraren araberako publizitateko cookieak